Wavelet Galerkin Algorithms for Boundary Integral Equations
نویسندگان
چکیده
منابع مشابه
Wavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature
In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on algorithmical details of the scheme, in part...
متن کاملWavelet Galerkin method for solving singular integral equations
An effective technique upon linear B-spline wavelets has been developed for solving weakly singular Fredholm integral equations. Properties of these wavelets and some operational matrices are first presented. These properties are then used to reduce the computation of integral equations to some algebraic equations. The method is computationally attractive, and applications are demonstrated thro...
متن کاملWavelet Galerkin methods for second-kind integral equations
We use vector-valued multiwavelets on compact sets to develop a Galerkin method for systems of integral equations of the second kind. We propose a compression strategy for the coeflieient matrix of the linear system obtained from this method and show that the compressed scheme preserves almost optimal convergence rate of the original scheme and yields a sparse matrix with a bounded condition nu...
متن کاملFast Algorithms for Boundary Integral Equations
This article reviews several fast algorithms for boundary integral equations. After a brief introduction of the boundary integral equations for the Laplace and Helmholtz equations, we discuss in order the fast multipole method and its kernel independent variant, the hierarchical matrix framework, the wavelet based method, the high frequency fast multipole method, and the recently proposed multi...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 1999
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827597329989